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ON STABILITY IN CONTROL SYSTEMS

by
Emilio Roxin

Brown University and University of Buenos Aires

1. Introduction

An axiomatic foundation of the theory of control systems was developed
, based upon the notion of attainable set (Barbashin {1}, Roxin [6],
[7], [8]). Starting from a set of basic axioms, one proves that the pro-
perties of the so defined systems (called sometimes "generalized dynamical
systems" or "generalized control systems") are in accordance with those of
commonly known control systems. The main advantage of this approach lies in
the fact that concepts like invariance, recurrence, ;tability, ete., are in-
troduced in its greatest generality, showing their intrinsic nature.

The relation of these systems with those defined by contingent equations
were studied in [9]. A way of defining generalized control systems locally,
on a closed subset of the phase space, was given in [11].

In the present paper, definitions of different kinds of stability for
generalized control systems are given, similar to thoée known for classical
dynamical systems (see, for example, Massera [5]). Practically every kind

of stability for dynamical systems, correspond to a strong and a weak similar

property in the case of control systems. This was already mentioned in a com-

munication of the author [10].

It should be noted that the relationship of different kinds of stability
of control systems with some "Liapunov functions" was already studied, in a
few cases, by Zubov [13]; here it is not treated, but it is, obviously, a good

subject for further investigations.
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2. Definition of general control systems

Consider as phase space X a complete, locally compact metric space.
Elements of X will be denoted by small letters (x, y, ...), subsets of

X by capitals (Y, F, A, ...). Let also denote:
i) p(x, y) the distance between the points x, y € X,

ii)  p(A, x) = p(x, A) = inf {p(x, y); y € A}, (distance between the

point x and the set A).

iii) B(A, B) = sup(p(x, B); x € A}, ("deviation" of the set A from

the set B).

iv) a4, B) = a(B, A) = max{B(A, B), B(B, A)}, (distance between the

sets A, B in the Hausdorff pseudo-metric).

v) y(A, B) = inf {p(x, B); x € A} =

inf {p(x, y); x € A, y € B} .
vi) SS(A) = {x € X; p(x, A) <€} , (E-nelghborhood of the set A).

The independent variable t (which will be called time) may be assumed
to take all real values or all non-negative values (t ¢ R or t ¢ R respec-
tively). Generally, only t € R+‘ will be considered, but in most cases the
difference is irrelevant.

A control systém will be assumed given by its "attainability function"
F(xo, o t), which corresponds to the set of all points'attainable, at time
t, from x, at time t . It is sometimes also called "integral funnel”.

The following axioms are assumed to holds

1. F(xo, to’ t) is a closed non-empty subset of X, defined for every



II. F(xo, tos to) =(x,} for every x_ €X, t_ eR.
< [ ]
I1I. For any to s tl = t2.
F(xo, tos te) = » i) . ;‘(xl, t t2).
X ¢ Xy s Yy
Iv. For any X, € X, to = tl, there exists some X, € X such

that x e F(xo, t tl).

V. For each X, € X, to = tl, € >0, there is & >0 such that

[t - t;] <8 implies
CI(F(XO, to: t), F(XO,AtO, tl)) <E€.
VI. For each x € X, t=1t, € >0, there is 5 > 0 =such that

p(x; v) <8 |t-t] <8 [t1-1]<s5, t s
imply

E(F(yo) t, 1), F(xo: t, T)) <E&.

It was shown in [8] how the behaviour of the control system can be
satisfactorily derived from these axioms. In the case when the control system
is only defined on a closed subset of the space X, the axioms have to be
modified as pointed out in [11].

The following properties proved in [8], will be needed.

The attainability function F(x, t, T) can be extended backwards, i.e.,

for 1 <+t (in [8] this extension was denoted by G). The properties of this
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backward extension are almost the same as for the forward part, the main
exception being that the continuity of F(x, t, 1) in 1 (axiom V) may

fail and F become unbounded (finite escape time backwards).

Definition 2.1! A mapping ul I - X, defined in some interval

I-= [to, tl] and such that

implies
(1)) e Flu(t), T, ),
is called a motion of the control system F; +the corresponding curve in

X-space, a trajectory.

The continuity of a motion follows from its definition and axioms I - VI.

A motion u,: [ta, tb] —X is a prolongation of the motion ugz[tc, td] =X,

if [ta, tb]3 [tc, td] and ult(t) = uz(t) for teft, t

c’ d]

In [8] the following properties are proved.

Theorem 2.1! if x, e F(xo, to tl), there exists a motion u{t) of

the control system, such that u(to) =X, u(tl) = X,

Theorem 2.2: if the motions ui(t), (i=1,2, 3 «e.) of a control
system are all defined in an interval [to, tl] (or [to, + ®)), and if

lim ui(to) = X, then some subsequence uy (t) converges to a certain
i k



motion uo(t) and the convergence is uniform in any finite interval.

Finally, the notation

F(A, £+ , t) = U F(x, t , t)
X €A
will be usede If A is compact, then F(4, t

t) is also compact for

3 Strong stability

Definition J.1: The set A€ X 1is called strongly positively invariant

with respect to a certain control system, if for any x, € A, t_ =1t, the

o
relation

F(xo, ty t)c A

holdse If A consists of a single point, it will also be called a strong

point of rest.

Note: If the control system is defined only in the closed subset YC X,
then A must be assumed to belong to the interior of Y, at positive

distance from its boundary.

Definition 3.2 The strongly positively invariant set AC X is called

strongly statle, if for every € >0 and t_2 0, there is & = B(€, to) >0

such that p(xo, A) < & implies

F(Xo, to) t) C SS(A)
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for all t =z to.

This stability will also be called strong Liapunov stability. Now, as it

is done in classical dynamical systems (see, for example, Yoshizawa [12] and

especially Massera [5] ), it is possible to define the following stability-

nn

type properties, which for simplicity are denoted by numbers followed by “s
(in order to indicate that it is a stability of the "strong' type). The

properties are:

1s) The strong Liapunov stability according to definition 3.2.

2s) The same definition 3.2, but with &€, to) = ®(€) independent of t,

(uniform strong stability).

3s) For every t 2 0 there exists a 80(to) > 0 such that for any motion

with u(to) =x € SSO(A)’

1lim

t—> 40 p(u(t), A) =0

holds (quasi-asymptotic strong stability).
4s) Property (3s) with 8, independent of t_ 2 0.

5s) For every t_ 2 0 there is So(to) > 0 such that p(xo, A) < 8, implies

lim
t—+ o

B(F(x tos t), A) =0

0’

(i.e., property (3s) uniformly for all motions u(t) starting at (xo, to)).

6s) Property (5s) with 8 independent of t_ 2z O.

7s) For every t_ 2z O there is So(to) >0 such that




e

lim

t—> + © B(F(SBO(A)’ tO: t): A) =0

(ice., property (5s) uniformly in x € S (A): quasi-equi-asymp’ otic
o
strong stability).

8s) Property (7s) with 8, independent of t_ z O.
9s) There is 50 > 0 such that

lim
T+ o S(F(SSO(A)’ to’ to + 1), A)

0
(@)

uniformly for all to 2 0 (uniform quasi-equi-asymptotic strong stability).

The relations between these properties are indicated in Fig. 1l. Both

groups of propertieg 1-2 and 3-9 are independent, as the following example

showse

Example 3.1¢ Let X = R and the control system be defined in Fig. 2{

where the motiocns u(t) are given graphically (this characterizes them suf-
ficiently well, the decrease for t—»+ ® may for instance be taken exponentially).
It should be noted that through X, = 0 there are infinitely many different
motions for every to. Axioms I-VI are satisfied, as it is easy to verify.

The set A = {x2 x <0} is positively strongly invariant =nd satisfies
property (9s), but it does not satisfy (1ls). Therefore, both groups of pro-
perties in Fig. 1 are independent.

It may be noted that if the definitions are not restricted to to z 0,
but taken for all to € R, then property (9s) is not satisfied any more, but
property (8s) ise

In this example, the set A 1is not closed. Indeed, for a compact A

we can prove:
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Theorem 3 13 For a compact, positively strongly invariant set,

property (7s) implies (1s).

Proofs let A be compact, positively strongly invariant and satisfy
property (7s). Then, for every to 20 and € >0, there are 60 >0 and

t12t such that
o
B(F(Sg (A), t_, t), A) <E
o}
for all t 2 tl.
If A 1is a single point, it follows from axiom VI that there is 61 >0

such that for all t in the interval [to, tl],
(3.1) B(F(Sa (a), tos t), A) <E&.
b

Taking & = min(Bl, 82), this value satisfies property (1s).
If A is not a single point, the existence of & satisfying (3.1) can
be proved as follows. Take for every x ¢ A a value BX > 0 such that

B(F(SSX(X)’ ts t), A) <€ uniformly in t,ft=t. A is covered by a

1
finite collection! AcU S4 (xi)(i =1, 2, vee, P)s Then U Sg is a
i Txg X,
1 i
neighborhood of A and there is some B, satisfying Sy (A)c Y Sg (xi),
1 1 X,

1

and therefore

F(Sal(A), o 1) se(A)‘
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Theorem J.2¢  Properties (2s) and (3s) together imply (5s).

Proof: let A <X be positively strongly invariant and satisfy
properties (2s) and (3s). Let t,2 0 be given and 8 = So(to) be the
same as in the definition of property (3s). It will be proved that the same
8 satisfies (5s).

Assuming, indeed, the contrary, there is some X € 8y (A) and a

(o]
sequence ti -+ o such that

(3.2) B(F(xo, to ti), A)>a>0 (i=1,2, 3 ).
As A satisfies (2s), there is & >0 such that p(x, A) < &

implies PB(F(x, t, 1), A) <a forall 712t 2 t . According to (3.2)

there is a motion ul(t) through (xo, to) such that

D(ul(tl), A) > a
and, therefore,

D(ul(t), A) > 5

for all t e [to, tl]. In the same way there is, for each i =2,3, ..., a

motion ui(t) such that ui(to) = x_  and p(ui(ti), A) > a, and, therefore,

p(u;(t), &) > 8

for all t ¢ [to, ti]. By theorem 2.2 some subsequence of ui(t) converges

to a limit motion uo(t) for all t 2zt , which therefore satisfies
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p(u (), &) > b

for all t 2 t_, contrary to property (3s).

& >
o]

(7s).

(i =

The same proof applies to the followings

Theorem 3.3  Properties (2s) and (4s) together imply (6s).

For compact sets the following stronger results are valid.

Theorem 3.4¢ If Ac X is conditionally compact (i.e. the closure

of A 1is compact), positively strongly invariant and satisfies

properties (2s) and (3s), then A also satisfies (7s).

Proof: let t 20, BO(tO) defined according to property (3s) and

n > 0. It will be proved that 17 satisfies the requirement of property

Assuming the contrary, there are € > 0, x, € SU(A) and t, =+ @

1, 2, 3, «..) such that
B(F(xi, tos ti), A) > >0 (i=1,2, 3 ees)s

As the closure of Sn(A) may be assumed compact, the proof coincides

essentially with the preceding one, taking

and

ui(to) =%

pu;(t;), A) > €.
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Therefore
P(ui(t), A) >8>0
for all t ¢ [to, ti], ® being related tc € by property (2s). By

compactness, X; = x € S¢ (A) may be assumed, so that there is some

limit motion u (t), for which
p(u_(t), A) > &

for all t 2t , contradicting property (3s).

In the same way one proves the following.

Theorem 3.5 : If AC X 1is conditionally compact, positively

strongly invariant and satisfies properties (2s) and (4s), then

A also satisfies property (8s).

The definitions (1ls) to (9s) should, of course, be such that ro two
of them turn out to be identical (to imply each other). This is obvious
in many cases, because it is known for classical dynamical systems (which
are a special case of control systems, the strong stability being for them
the common stability). For less obvious typical cases, two examples are

given here.

Example 3.2: X = R and the control system is an ordinary dynamical
system whose motions are given in Fige. 3. The set {0} satisfies properties

(25) and (7s), but not (k4s).

Example 3.3: X = R® and polar coordinates P, & are used. With the

auxiliary function h(s) given in Fig. 4a, the equation of the motions
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are given by

sign 6 for -1 <8 <0 and 0<8 <7,

Do
]

O for € =0 and 8 =+1,

this constant being defined by the initial conditions:

p(t))
const = .
"% + n(a(s,))

The motions starting at ¢(0) = Pos 8(0) = 0 1lie on the funnel-shaped

surface of equation
-t
p = po[e + h(9)]

drawn in Fig. 4c.
For every motion, p(t) =0, so that the solution p =0 satisfies
property (3s) . In spite of this, the attainable set F[p(0) = Fos 8(0) = 0, tJ,

which is the cross-section of the above mentioned surface, does not tend to

m
zero because for 6 = 8% = 5

o* = po[e't + 1] =P, for t 2+ o

Therefore property (3s) does not imply (5s).
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2
Example 3.4 Let X =R~ and the motions defined by

x = K cos @
y=k et sin a
a = arc tg(t + ¢) or azi% .

Here «a is taken mod 27 and k and c¢ are constants determined by the
initial conditions. This system satisfies property (5s) but not (7s) (see

Fig. 5).

b, Weak stability

Definition 4.1: The set AC X is called weakly positively invariant

with respect to a certain control system, if for every x, € A, to z 0,

there exists some motion wu(t) such that u(to) =x and u(t) e A for

o
all t = to. If A consists of a single point, it also will be called a
weak point of rest.
Note: If the control system is defined only on the closed subset
YC A, then the motion wu(t) should be defined (not empty) for all

t 2 to. For the stability properties defined below, A are assumed

to belong to the interior of Y, at a finite distance from OY.

Theorem 4.1:  (Barbashin [1]): necessary and sufficient for the weak

positive invariance of a closet set A, is the condition

F(xo, tos 1)) A4 ¢

for every x €A, t2 t (¢ is the empty set).




“1h4-

Definition 4.1: the weakly positively invariant set AC X is called

weakly stable, if for every € >0 and t_ % 0, there is 5= s(e, to) >0
such that p(xo, A) < & implies the existence of some motion u(t) with
u(to) = x_ and p(u(t), A) <€ for all t 2 t e

This kind of stability will be called also weak Liapunov stability.

Now, as in the preceding section, the following stability properties

are defined; the "w' indicates that they correspond to the weak type.

lw) The weak Liapunov stability according to definition 4.1.
2w) The same definition 4.1, but with B&(€, to) independent of t_ 2 0
(uniform weak stability).

37) For every t, 2 0 there is So(to) > 0 such that p(xo, A) < & implies

tf’f w MF(x, t , t), A) = 0.
(where 7Y(A, B) = inf {c(a, b); a €A, b € B} )

hw) Property (3w) with 5, independent of t_ 2 O.

5w) For every t, 2 0 there is so(to) > 0 such that if p(xo, A) < 8>
there is some motion wu(t) with u(to) = x_and

o]

lim

S elu(t), ) = 0

(quasi-asymptotic weak stability).

6w)4 Property (Ow) with b, 1independent of t_Z 0.

7w) For every t % 0 there is Bo(to) >0 and for every € > O there is
T = T(t_, €) such that p(x, A) < 8, implies the existence of a motion

u(t) with u(to) = x_ and lim p(u(t), A) =0 for t -+ », in such

(o]

a way that p(u(t), A) <€ for all t 2 t,+ T (quasi-equi-asymptotic

weak stability).
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Prcperty (7w) with B, independent of t_ 2 O.

Property (8w) with T = T(€) independent of t, 20 (uniform quasi-equi-

asymptotic weak stability).

Note: For a strongly stable compact set A and any finite

interval [tl, t2], it was proved in [8] that a value B®(E) can be
taken such that the stability condition of definition J.2 is satisfied
for all to € [tl, t2]. This is similar to the classical dynamical
systems. The following example shows, however, that this is not

true for the weak stability.

Example 4.1: Let X = R2 and the motions of the control system

defined by:

a)

b)

In the solid pyramidal cone t >0, |x] <t -y, |x| <2y -t the

motions are given by

dx _x . y _ ¥

dt ~ ¢t ’ at ~ t °
Outside that cone: X=X _o.

' at = at

ax dy) at

at ’ at
any point is required to belong to the convex hull of the set of tan-

On the boundary of that cone, the tanget to the motion (

gents at infinitely nearby points, plus the vector X =+ 1, §¥ = O.

This way, the motions are really defined by a contingent eguation (see

Roxin [9]) and are shown in Fig. 6. At the points of the boundary of the

pyramidal cone, the solutions are not unique. It is easy to verify that the

origin x =y = O is weakly positively invariant and satisfies property (1w).

On the other hand, there is no 50(6, to) valid for all 0 <t <T, for

any T>O, € > 0.
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This example can be easily modified in such a way that it applies to
properties (3w), (5w) and (Tw) (the only thing to do is to change conveniently
the motions outside the pyramidal cone). Therefore, it makes sense to

define the properties:

1%w) For every finite interval [t,, t,] ¢ R", there is 8 >0 such
that the condition of property (1w) is satisfied for all

t € [tl, t2].

)

%) Similarly for property (3w).

5%w) Similarly for property (5w).

T*w) Similarly for property (7w), for both 80(1:0) and T(E, to).

The relations between all these properties are given in Fig. 7.

Example 3.1 (Fig. 2) is valid also for the weak stability; x =0 is
a weak poi‘nt of rest which satisfies proi)erty (9w) but no. (1lw). This proves
the independence of both groups of properties in Fig. 7.

Similarly, example 3.2 shows that property (7w) does not imply (4w).

The following example shows that property (3w) does not imply (Gw).

Example 4.2: TLet X = R and

k cos a(t)

o]
]

«
n

k e % sin a(t).

Here, k 1is a constant determined by the initial conditions, and the
functions a (t) are given (mod 2y) in Fig. 8a. It is to be noted that

a(t) = 0 is an admissible function, from which other curves branch off.
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The motions lie on tubes which become more flat as t —+ o, but the
attainable set from any point of the tube-surface is, for sufficiently large
t, the whole cross section of the tube-surface} therefore, its minimal

distance to the origin tends to zero (property (3w)).

5. Finite stability

In the preceding two sections, the properties number 1 and 2 correspond
to the common (Liapunov) stability, and those numbered 3 to 9, to the quasi-
asymptotic stabilities. Assuming both to hold, one obtains the very important
asymptotic stabilities. As in control systems there is no assumption =zbout
unigueness of motion x(t) through each point (xo, to) (which restricts so
much the classical dynamical systems), there can be defined even stronger
stabilities than the asymptotic ones, by requiring that the motions x(t) not
only tend to, but actually reach the invariant set A in finite time. This
type of stability will be called finite stability ; it can be defined for the
strong and for the weak stability, and like the asymptotic one, it will be
split up into the quasi-finite plus the Liapunov stability.

Once the main idea is established, the development i1s gquire straight-
forward. Even some examples given above can be slightly changed so that they

apply to the finite stabilities.

Finite stabilities of the strong type (here A is a strongly positively

invariant set).

10s) For every t 2 O there exists a & (t ) >0 such that for every
o o' o
motion u(t) with u(to) = x € 8 (A), there is a finite value
o
Te >0 such that u(to + Tf) € A (and therefore u(t) ¢ A for

all t >t + Tf). In general, 7T, depends on the motion u(t).

f
(This is the quasi-finite-strong stability. )
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| 11s) Property (10s) with 5, independent of t_ Z Q.
12s) For every t_ Z 0, there is Bo(to) >0 such that x_ € S (A)
o
implies the existence of Tp = Tf(xo, to) > 0 such that
3
F(xo, tos to+ T A,
and therefore F(x_ , t ,t) A forall t>t_+ 1_.
1% v (%4 1
13s) Property (12s) with 8, independent of t .
1ks) For every t_ 20 there is 5O(t0) >0 and a finite Tf(to) >0
such that

F(SSO(A)’ b b+ Tf)c: A.

This is the quasi-equi-finite strong stability.

15s) Property (14s) with 8, independent of ¢t .

16s) Property (15s) with 7. independent of t

£
finite strong stability).

Obviously the following implications hold:

10s - 3s 5 11s — Us 5 12s - 5s

1bs = 7s 5 15s — 8s 3 16s - 9s
Fig. 9 shows the implications between the stabilities

Finite stabilities of the weak type (here A is

invariant set).

(uniform quasi-equi-

5 13s - 6s;}

of this last groupe.

a weakly positively

10w) For every t_ 2 O there is So(to) >0 such that if x_ € Sg (4),

(o]




10%w)

11lw)

12w)

12%w)

13w)
1hw)
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there is a motion wu(t) with u(to) = x_ and u(tO + Tf) €A

o
for some finite 71,>0 (and, therefore, this motion can be
prolonged indefinitely in A). This is the quasi-finite we:zk
stability.

Property (10w), and for any finite interval [tl, t,] € R+, 5o(t0)
can be taken to hold uniformly for all to € [tl, tg].

Property (10w), with 5, independent of t, Z 0.

For every té 2 0 there is 5O(to) >0 and some value

T

0<1,= Tf(to) such that x_ e Sg (A) implies the existence

o
and u(to, Tf) e A (quasi-equi-

£ £
of a motion wu(t) with u(to) = X
finite weak stability).

Property (12w), and for sny finite interval [t), t,] e &, & (t,)
can be taken to hold uniformly for all t, e [tl, t2].

Property (12w), with 5, independent of t, Z 0.

Property (13w), and Te= Tf(Eb) independent of t, 2 0 (uniform

quasi-equi-finite weak stability).

Obviously, the following implications hold:

10w - 5w 10%w — S*w 3 11 w — 6w 5

-e

12w - Tw s 12%y — ¥y ] 13 w - 8w 5 1bw - 9w .

Figure 10 shows the implications between the stabilities of this

last group.

Remarks about the finite stabilities: The importance of moticns arriving

at the origin (supposed to be a positively weakly invariant set) in a finite

time, plays an important role in control theory. Therefore, the stabilities

of the finite type were already used, without special denomination by numerous

authors (for example, Kalman [2], Markus and Lee [4], LaSalle [3]). ILaSalle
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even pointed out the importance of considering stability in finite time
intervals. The region of attraction for the finite weak stability cor-
responds to what is known as the domain of controllability ([4]). It
may be noted that most asymptotically stable systems of the real physical
world are, indeed, finitely stable.
The strong type of finite stability has not been used, apparently, but

a rather trivial example shows that it can appear even in the simple case of:

$=-2V[x]. (2+u) . sign x
with the control u(t) restricted by |ul = 1. In this

equation, the extreme values of u(t) correspond to the motions

for u= s<

VTx]

2
[Jlxol + 3t - 3t] for tst +—5

X(t) =
=l 5]
‘ O for tzt + 3
o 3
for u= - s:
Mxo|+to-t}2 for t§t0+~][xo|
[x(t)] =
0 for této+\/[xol .

The attainable set is indicated in Fig. 11l.
Of course, the definitions given above do not solve any specific problem,
but they may help to treat systematically cases which appear frequently in

applications.
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